GANPAT UNIVERSITY

FACULTY OF ENGINEERING & TECHNOLOGY

Programme: Bachelor of Technology
Branch/Spec.: Mechanical Engineering
Semester: VIII
Version: 2.0.0.0
Effective from Academic Year: 2017-18
Effective from the batch Admitted in: July 2014
Subject code: 2ME802
Subject Name: Production & Operations Management

Teaching scheme: Examinations scheme (Marks)

<table>
<thead>
<tr>
<th>(Per week)</th>
<th>Lecture(DT)</th>
<th>Practical(Lab.)</th>
<th>Total</th>
<th>CE</th>
<th>SEE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>TU</td>
<td>P</td>
<td>TW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>Theory</td>
</tr>
<tr>
<td>Hours</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>Practical</td>
</tr>
</tbody>
</table>

Credit 30 20 10
Hours 30 20 50

Pre-requisites:

Learning Outcome:

After learning this course, student should be able to:

- Identify and develop operational research models from the verbal description of the real system.
- Understand the mathematical tools that are needed to solve optimisation problems.
- Use mathematical software to solve the proposed models.
- Develop a report that describes the model and the solving technique, analyse the results and propose recommendations in language understandable to the decision-making processes in Management Engineering.

Theory syllabus

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Operation Research: History of OR, Approach, Techniques & tools, Typical application of OR, Scope of OR, Limitations of OR.</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Linear Programming: General L.P. Format, Formulation of production problems, Method of solution: Graphical, Simplex, Modified simplex, Big M and 2 phase methods, Application of L.P. to solve problems of production systems.</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Transportation Model: Formulation, methods of solution: North West Corner, Least cost and Vogel’s approximation methods; Optimality tests: Stepping stone and MODI methods; Degenerate and unbalanced transportation problems, Application to production systems.</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Assignment Model: Formulation; Methods of solution: Enumeration, transportation, Hungarian methods; Areas of application in the solution of production problems.</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Project Management: CPM and PERT in project management, Concept of slack/float and its significance; Project cost analysis, Crashing, Resource smoothing and leveling, Applications in production systems.</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Inventory Control: Inventory parameters and properties; Deterministic and probabilistic, Inventory models; Concept of zero inventory; Application to production problems.</td>
<td>4</td>
</tr>
</tbody>
</table>
Queuing Models:
Concepts relating to Queuing systems, types of queuing system (use of six character code), Basic elements of Queuing Model, Role of Poison & Exponential Distribution, Concepts of Birth and Death process, Steady state measures of performance, M/M/1 model with and without limitation of q-size M/G/1, single channel with Poisson arrival rate and general service time.

Production Planning and control: Introduction:
Types of Production systems (Mass production, process production, batch production, job production), Characteristics, Function and objective of Production planning control-product design and development including standardization and simplification-sales forecasting:- Concept, Techniques, application,- Process planning and routing, Material control, Loading, scheduling, Dispatching, Progress reporting, Expediting, Preplanning Use of computer in PPC.

Inspection and Quality Control: Inspection:

Value Engineering and value Analysis:
What is value engineering, Its types, Approach and analysis, Techniques, Procedures, Advantages and application of value engineering and value control?

Practical content
The term work shall be based on experimental and analytical work on topics mentioned above.

Text Books

Reference Books